Summability of Fourier Orthogonal Series for Jacobi Weight Functions on the Simplex in R

نویسندگان

  • YUAN XU
  • Palle E. T. Jorgensen
چکیده

We study the Fourier expansion of a function in orthogonal polynomial series with respect to the weight functions x α1−1/2 1 · · · xαd−1/2 d (1 − |x|1)αd+1−1/2 on the standard simplex Σd in Rd. It is proved that such an expansion is uniformly (C, δ) summable on the simplex for any continuous function if and only if δ > |α|1 + (d − 1)/2. Moreover, it is shown that (C, |α|1 + (d + 1)/2) means define a positive linear polynomial identity, and the index is sharp in the sense that (C, δ) means are not positive for 0 < δ < |α|1 + (d + 1)/2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Summability of Fourier Orthogonal Series for Jacobi Weight on a Ball in R

Fourier orthogonal series with respect to the weight function (1 − |x|2)μ−1/2 on the unit ball in Rd are studied. Compact formulae for the sum of the product of orthonormal polynomials in several variables and for the reproducing kernel are derived and used to study the summability of the Fourier orthogonal series. The main result states that the expansion of a continuous function in the Fourie...

متن کامل

On absolute generalized Norlund summability of double orthogonal series

In the paper [Y. Okuyama, {it On the absolute generalized N"{o}rlund summability of orthogonal series},Tamkang J. Math. Vol. 33, No. 2, (2002), 161-165] the author has found some sufficient conditions under which an orthogonal seriesis summable $|N,p,q|$ almost everywhere. These conditions are expressed in terms of coefficients of the series. It is the purpose ofthis paper to extend this result...

متن کامل

A contribution to approximate analytical evaluation of Fourier series via an Applied Analysis standpoint; an application in turbulence spectrum of eddies

In the present paper, we shall attempt to make a contribution to approximate analytical evaluation of the harmonic decomposition of an arbitrary continuous function. The basic assumption is that the class of functions that we investigate here, except the verification of Dirichlet's principles, is concurrently able to be expanded in Taylor's representation, over a particular interval of their do...

متن کامل

2 9 Ja n 20 04 MEAN CONVERGENCE OF ORTHOGONAL FOURIER SERIES AND INTERPOLATING POLYNOMIALS

For a family of weight functions that include the general Jacobi weight functions as special cases, exact condition for the convergence of the Fourier orthogonal series in the weighted L space is given. The result is then used to establish a Marcinkiewicz-Zygmund type inequality and to study weighted mean convergence of various interpolating polynomials based on the zeros of the corresponding o...

متن کامل

Titchmarsh theorem for Jacobi Dini-Lipshitz functions

Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998